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Abstract 

This paper describes a method to select from an original huge data set, 

representative data to train, test, and validate neural network models. It was called 

Stratified/PCA and applies stratification and principal component analysis to efficiently 

reduce the amount of observations (records) and original variables. The new set keeps a 

high amount of the original data set. The performance of neural network models built 

using those reduced data sets is very similar to that of neural network models built using 

the entire data set. In fact, it is both, significantly better and consistent than any known 

data selection method, including those based on random selection criterion.  A kind of 

recognition pattern can be found within Stratified/PCA. Therefore, this novel technique 

can be applied as a data mining or preprocessing method to efficiently build non linear 

models using neural networks. 
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1. Introduction  

Frequently, when historical data is collected, a large number of observations are 

stored and, with each observation, a large number of variables are included. One reason 

for the large size of these data sets may be that once the initial cost of setting up the data 

collection mechanism is incurred, the additional cost of collecting more data is 

comparatively small and may avoid future data collection costs if unforeseen use of the 

data is later identified. Historical series of great volumes of data can be taken advantage 

of the generation of new information. It can be originated with the presence of inherent 

data which was indirectly collected when was created the original source of data.  

Neural networks are generally recognized as an important model-building technique 

that can take advantage of the existence of historical data sets. There are numerous 

examples of successful applications using this technique [6], [17]. However, large 
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number of observations and variables in historical data present challenging and 

interesting problems for neural networks. The entire data set available for building 

neural network models is usually divided into two categories: training and testing. All 

relevant characteristics of the problem should be represented in each of these categories, 

otherwise poor models would be built or misleading performance results would be 

reported. If the data used to train the neural network is not representative of the entire 

data set, then the model will perform poorly on the data selected for testing the trained 

neural network. On the other hand, a neural network trained with representative data 

will perform poorly during testing if the data set selected for testing purposes is not 

representative of the entire data set. Another problem that neural network builders face 

when using data sets with large number of observations and variables is the large 

amount of time that they take to train the networks and the increased complexity of the 

resulting network architecture. 

This paper deals with the design and implementation of a reliable and consistent 

data preprocessing method to reduce observations and variables from large data sets. 

Field of exploratory data analysis is eventually aimed to analyze those data sets using 

either univariate or multivariate statistical techniques and, heuristic techniques well-

known like data mining. [17], [18]. Data exploration involves certain prior processes 

before building neural network models able to reach an acceptable performance to 

predict or recognize patterns. In that case, well combined procedures using multivariate 

and statistical techniques are useful as alternative tools capable of aiming a data pre-

processing. This particular method integrates the concepts of stratification and principal 

component analysis to select representative observations and to eliminate redundant 

variables from these data sets. Neural network models trained and tested with data sets 

selected from an original data set using this method perform better than neural network 

models trained and tested with data sets  selected  randomly from the same original data 

set.  In addition, neural network models built with a reduced number of variables 

selected by this method perform quite similar to models built using all the variables in 

the original data set. [4], [5]  

 

2. Reducing the Number of Observations and the Number of Variables 

Stratification reduces the number of observations using the dependent variable as 

screening variable and ignores the effect of independent variables. Therefore, it cannot 

be used to eliminate unnecessary independent variables. [2], [4], [5]. Stratified sampling 
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technique, [3], also known as a variance reduction technique, aims to achieve a 

reduction in size but still maintaining a data set with similar statistical properties to the 

entire data. The main property of this technique is to achieve a minimum deviation 

between the mean value for the same variable founded with the selected sample and the 

entire data.  

Large data sets, however, often include a large number of independent variables and 

observations. It is very likely that some of the variables are irrelevant for the problem at 

hand. Also, a group of variables may carry the same information about a particular 

problem. Eliminating irrelevant variables from a data set or replacing a group of 

variables with one variable carrying the same information can significantly reduce the 

size of the data. Neural network models built using this reduced data are likely to have 

fewer computational units and require less training time. [4], [8], [14]. 

Principal Component Analysis (PCA) [10], [13] is a proven statistical method that 

can reduce the number of variables in a data set with minimal loss of relevant 

information. PCA uses the covariance matrix and the correlation matrix to create a new 

and smaller set of variables with principal components equivalent to the principal 

components of the original set of variables. But in doing so, PCA keeps all of the 

observations in the original data set. Therefore, even if PCA is used to reduce the 

dimension of a data set, the problem of selecting truly representative training and test 

sets required to build reliable neural network models still remains. In other words, the 

principal components in the samples selected for these subsets should be as close to the 

principal components in the original data set as possible.  

The proposed method is able to reduce both observations and variables from an 

original data set. Therefore, it can also be used to select truly representative training and 

test data sets to build reliable neural networks.  This method integrates stratification and 

PCA and is referred to in this paper as Stratified/PCA  [4]. 

Some relevant characteristics of this Stratified/PCA method are: 

• The dependent and independent variables are examined as a whole. 

• The new set of independent variables is based on the concept of explained variance.  

• The new set of independent variables is in the same orthonormal basis.  

• It relies not only on the variances provided by the first principal components, but also 

on the correlation between the minor components and the dependent variable.  
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In addition to the characteristics mentioned above, this method relies strongly on 

guidelines established by Kaiser H. [10], Jolliffe I. [9], Mardia K. et al. [13], to improve 

the reduction of the number of independent variables. These guidelines suggest that  

• The eigenvalues of the correlation matrix R or covariance matrix Σ of the 

independent variables are the appropriate mechanism to reduce the number of 

independent variables.  

• The correlation between the reduced independent variables and the dependent 

variable is important in determining the final reduced set of independent variables. 

• The explained variance for the reduced independent variables guarantees that these 

new variables will be representative of the original independent variables. 

• The correlation between the principal components and the original independent 

variables is recommended as a way to determine whether or not the new 

independent variables will be representative. 

Before describing the Stratified/PCA method, some previous efforts made to address 

this problem are worth noting. Kramer, M. [11], [12] introduced the concept of 

autoassociative neural networks as a mechanism to reduce the number of independent 

variables. With a network architecture of five layers, Kramer’s network uses the first two 

layers (input and mapping layers) to reduce the original independent variables to a new set 

of independent variables in the intermediate layer (the bottleneck layer). From the 

intermediate layer, the reduced set of variables is used as input variables to recover the 

original independent variables using the next two other layers (mapping and output layers). 

This reduction process uses nonlinear functions in the mapping and bottleneck layers as a 

mechanism to recover the non-linearity present in the original variables.  

Huge data sets with a large number of variables would be difficult to train using 

Kramer’s network because of the five-layer network and the number of nodes required in 

the training process. Another drawback of this proposed method is that the intermediate 

layer includes an arbitrary number of reduced independent variables and it is not clear how 

to determine their number. 

Similar to Kramer's work, Tan et al. [16] introduced the concept of IT-net (Input-

Training-net) as a variation of Kramer's autoassociative neural networks. They proposed a 

neural network with a single hidden layer to reduce data size. The single hidden layer 

includes the reduced independent variables. Tan et al., analyze the correlation matrix of the 

original independent variables, before reducing the variables using the IT-net. They create 
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groups of independent variables highly correlated among them and select only the first 

principal component for every group of correlated variables. The rest of the variables 

remain the same since they are themselves independent. After completing this primary 

reduction, the new temporary set of independent variables determined by the selected 

principal components and the variables that do not belong to any group are used as input 

variables in the IT-net network. Those first principal components might belong to a 

different orthonormal basis since every group of correlated variables might determine 

different dimensional spaces. Moreover, the original variables not being grouped remain in 

the original dimensional space.  

The stratified/PCA preserves the reduced independent variables in the same 

orthonormal basis. The values of the reduced independent variables in the selected samples 

would keep a high degree of correspondence with those of the entire data. These issues are 

not met by IT-net because the selected principal components do not represent the entire 

original variables. 

Dong et al. [7] developed a model with two three-layer networks to compress and 

decompress data with a nonlinear behavior within the variables. They assumed that if PCA 

is applied to nonlinear problems, important information held in the last principal 

components (minor components) could be ignored due to their very small variances. They 

assumed that an excessive number of principal components would be present if the minor 

components were also being kept. If this reduction were applied to large data sets with a 

large number of observations where the variables are separated in one dependent variable 

and the rest as independent variables, the previous assumption would not consider the 

importance of the correlation of both the independent and dependent variables.  

The stratified/PCA method analyzes not only the variances provided by the first 

principal components, but also the correlation between the minor components and the 

dependent variable. [9]. This method adds any minor components correlated with the 

dependent variable. In fact, this method showed that part of the nonlinearity of the 

independent variables could be captured.  

Dong et al. [8] randomly separated the data sets for training. The stratified/PCA method 

proved that the training data sets selected from the original data set by stratification were 

more reliable. [4], [5]. Therefore, it can be applied as a data mining or preprocessing 

method to efficiently build non linear models using neural networks. [17].
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2.1. The Stratified/PCA Method 

The Stratified/PCA method can be described as the following sequence of steps: 

Step 1. The entire data is separated in strata using the dependent variable like a variable 

of stratification as described in the previous section. The new set of observations of the 

dependent variable must be selected samples with a high confidence of representation of 

the entire data. Data is separated into L strata such that the summation of the sizes for 

every stratum i, Ni, must be the size N of the entire data,  ∑=
L

iNN , and the mean for the 

stratification variable of the entire data must be ∑ ⋅
=

L

ii

N
YN

Y . 
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Figure 1. Stratification of the main variable 



 7

Step 2.  The eigenvalues of the correlation matrix are computed for every stratum of the 

entire data. By stratum, those values will be compared and evaluated one by one 

between the entire data and the entire sample. PCA is applied to every stratum, i in the 

entire data. Eigenvectors Ei
[pop] and eigenvalues Λi

[pop] are estimated for every stratum 

from the correlation matrix Ri
[pop] of the independent variables Xi

[pop].  
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Figure 2. Principal components of the entire data in every stratum 
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Step 3. Stratified samples of size ni are selected from every stratum of size Ni of the 

entire data.  
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Step 4. PCA is applied to the independent variables X[smp] for the entire sample selected 

in step 3. Using the correlation matrix R[smp] of the independent variables, the 

eigenvectors E[smp] and eigenvalues Λ[smp] are estimated.  
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Figure 4. Principal components for the entire sample 
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Step 5. PCA is applied to the independent variables Xi
[smp] for every stratum i of the 

selected sample X[smp] obtained in Step 3. Using the correlation matrix Ri
[smp] of the 

independent variables, the eigenvectors Ei
[smp] and eigenvalues Λi

[smp] are estimated. 
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Step 6. The eigenvalues Λi
[smp] and the correlation matrix Ri

[smp] are evaluated stratum 

by stratum using the guidelines established by Kaiser H. [10], Jolliffe I. [9], Mardia K. 

et al. [13]. The eigenvalues for every stratum Λi
[smp] in the selected sample X[smp] greater 

than a given threshold value allow the selection of the first candidates of principal 

components ik1 . 
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Step 7. The percentage of explained variance PSi given by the eigenvalues Λi
[smp] of the 

ik1  principal components for every stratum in the selected sample is compared with the 

percentage of explained variance PPi given by the corresponding eigenvalues Λi
[pop] of 

the ik1  principal components for every stratum in the entire data. If every percentage in 

PSi is greater than its corresponding percentages in PPi, then the stratified sample is 

selected and the last eigenvectors should determine the new orthogonal axis for the new 

independent variables. Otherwise, a new stratified sample is selected from Step 3. 
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Step 8. The principal component scores for the selected sample Z[smp] are estimated by 

projecting their original values onto the orthonormal basis. The last principal 

components k2 that might be retained are determined based on the guidelines previously 

described. The correlation matrix between the principal component scores Z[smp] and the 

dependent variable Y[smp] determine whether or not new principal components will be 

retained from the minor components. The correlation of the selected k2 principal 

components must exceed the given threshold value. If the correlation of the minor 

components with the dependent variable is not significant, then no minor components 

are added. 
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Step 9. The final value of the selected principal components k are the first k1 of them, 

which is the maximum of the ik1 (s) (steps 6 and 7), and the last k2 principal components 

(step 8). This final selection is extracted from the entire matrix of principal component 

scores Z[smp] and they represent the new non-correlated variables explaining a high 

percentage of the variance of the entire set of the original independent variables. 
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3. Stratified/PCA andNeural Networks  

The reliability of the Stratified/PCA method was evaluated in a manner similar to 

that used to evaluate the stratified method. We first created an original data set by 

selecting discrete values from nine independent terms, 3
x

xe4 , 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π− x4
3cos

e , 
2

x , ⎟
⎠
⎞

⎜
⎝
⎛ π

x
2

cos , 

⎟
⎠
⎞

⎜
⎝
⎛ π

x
4

cos , 2
1

x , ( )xsine π , 3x00756.0 , and 2x169.0  and for values of x in the interval 0 ≤ x ≥ 

25. Each discrete value of x is denoted by xi where i is an integer between 1 and 7,500, 

where 7,500 is the number of data points created. The values of the terms were grouped 

as observations in the vectors X1 through X9 for every xi. The summation of the nine 

terms describes the function shown on Figure 10.  
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Figure 10. Experimental function 

 

The original data set of 7,500 records was divided into two sets using the 

Stratified/PCA method. One subset of 85% of the data is used to train neural network 

models and the rest is used to test the previously trained neural networks. Additionally, 

two pairs of reduced new subsets, one from the set of 85% of data and the other from 

the set of 15% of data were created using the stratified method (without PCA) and 

random selection. Neural networks were trained using those two reduced 85% subset of 

data. Finally, the reduced sets of data from the data set of 7,500 records were created 

using separately the three different previously mentioned reduction methods: 

Stratified/PCA, the stratification, and random selection. Same numbers of set were 

selected by each method applying seven different sample sizes: 250, 500, 800, 1600, 

2,000, 3,000 and 4,500 samples. At this instance, the presence of a reliable number of 

variables in the reduced data set is a consequence of applying a threshold value of 

lambda. The stratified/PCA method was applied with two different values of lambda, 

0.7 (suggested by Jolliffe [9]) and 1 (suggested by Kaiser [10]). 



 16

Figure 11 shows a guide to construct and generalize neural networks using examples 

selected by Stratified/PCA. The following steps describe a general guide when 

Straified/PCA and a Neural Network Software is used. [14].  

• Setup the Original Archive recognizing the set of variables for each observation. 

• Apply Straified/PCA to the original set using stratification at the first stage. Two 

sets are extracted. Almost 85% of the original data as a set of example data to apply 

the whole method. The rest of data (validation data) is used for neural network 

model validation.  

• These two sets are used as input data in the Stratified/PCA process to create the new 

reduced data set. Two main objectives are reached at this stage: reliable stratified 

samples of observations and a new set of latent variables with a high percentage of 

the explained variance for the entire set of variables. 

• At this stage the correlation matrix is prepared as the input data to use PCA. The 

new latent variables are identified and selected for every stratified samples. This 

process is applied in the same way to the different sample sizes from the examples 

data. Similarly, the validation data is prepared by reducing the original variables in 

an equivalent set of latent variables to those created from the examples data. 

• These new sets of examples with less variables and observations are used as training 

and testing data sets in the construction and validation of neural network models. 

The network architecture was similar for each built model: input nodes, hidden 

nodes, hidden layers, activation functions, initial weights and output nodes. 

Additionally, the set of parameters and evaluation measurements were similar for 

each neural network model: leaning rate, momentum value, backpropagation 

algorithm, Root Mean Square Error (RMSE), etc. 

• Finally, the generalization of each trained and tested model was validated with the 

validation data set. Outcomes of consistency and reliability were evaluated using the 

similar method with several replications to different samples of observations at 

different sizes. 
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Figure 11. A block diagram to describe the use of the preprocessing method of 

Stratified/PCA and Neural Networks 

 

In this experimental case, seven different neural networks were trained for each of 

the three selection methods: random, stratified and stratified/PCA. Seven data sets were 

prepared using the previous algorithm for each sample size indicated above. Each 

network was tested by measuring the RMSE value which is a mechanism to identify the 

ability of replication of the dependent variable when the observed and computed values 

are compared. 
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Table 1. RMSE values of the performance of neural network models tested 

Validation using 1500 examples
Data set Stratified/PCA

size Random Stratified Lambda > 1 Lambda > 0.7
Average 0.62717 0.39482 0.61886 0.56625
Standard deviation 0.28382 0.11100 0.16342 0.12659  

 

Table 1 shows the average and the standard deviation of the RMSE values over the 

seven models built for each of the sampling methods discussed above. The 

Stratified/PCA method reduced the nine independent variables in the original data set to 

five (with lambda set to 1) and seven (with lambda set to 0.7). The table shows that 

stratification, as was previously shown [4], can create test and training data to 

consistently build accurate neural networks. Moreover, the size of the training data can 

be significantly reduced (from 6,375 samples to 250 samples in this case) with the 

corresponding decrease in training time. The Stratified/PCA method, with lambda set at 

0.7, yielded similar results to those of stratification and significantly better results than 

the random method while still reducing the number of variables from nine to seven. 

Figures 12, 13 and 14 show the plot of the dependent variable for the validation data 

set and the models built with Stratified/PCA data sets of 500 and 800 observations and 

using the Jolliffe and Kaiser threshold values. Figures for the other five sample sizes show 

similar results. To facilitate visual comparison, they are shown with the plot of the entire 

data set (7,500 records) and the test set (1,500 records) in the first line. The plot on the left 

side corresponds to the training data set using Stratified/PCA methods on both lambda 

threshold values (1 or 0.7). The plot on the right side shows the prediction curves using the 

test data set provided by stratified/PCA method for both lambda threshold values. 

 

 

Figure 12. Validation data set of 1,500 observations. 
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Figure 13. Training and Validation of Neural Networks models built using 

Straified/PCA with samples of 500 observations. 

 

 

Figure 14. Training and Validation of Neural Networks models built using 

Straified/PCA with samples of 800 observations. 

 

4. Conclusions 

Historical data sets often include a large number of observations and variables that 

present difficult problems for building neural networks. Large numbers of observations 
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lead to very long training times and large number of variables lead to large network 

architectures. In addition, neural networks require the selection of training and test sets 

that are representative of the entire data set. The random method used to either reduce 

the size of the original data set, or to select training and test sets from the original data 

can yield neural networks with widely different performances.  

The Stratified/PCA method presented here can be used to consistently select 

samples from a data set that are representative of the entire data set and therefore 

maintain the original problem characteristics. The method also eliminates unnecessary 

variables or replaces groups of collinear variables with a smaller set of independent 

variables. The end result is that by reducing the number of observations and variables in 

a large data set, the amount of time required to train neural networks is reduced. Also, a 

reduction in the number of variables leads to networks with simpler architectures. 

Furthermore, this method can be used to select representative samples to build training 

and test sets needed to build and test consistent and reliable neural networks. 
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